Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Conjugate Projective Limits
  • Publication Type:
    Journal article
  • Authors:
    Orbanz P
  • Publication date:
  • Keywords:
    math.ST, math.ST, stat.ML, stat.TH
  • Notes:
    49 pages; improved version: revised proof of theorem 3 (results unchanged), discussion added, exposition revised
We characterize conjugate nonparametric Bayesian models as projective limits of conjugate, finite-dimensional Bayesian models. In particular, we identify a large class of nonparametric models representable as infinite-dimensional analogues of exponential family distributions and their canonical conjugate priors. This class contains most models studied in the literature, including Dirichlet processes and Gaussian process regression models. To derive these results, we introduce a representation of infinite-dimensional Bayesian models by projective limits of regular conditional probabilities. We show under which conditions the nonparametric model itself, its sufficient statistics, and -- if they exist -- conjugate updates of the posterior are projective limits of their respective finite-dimensional counterparts. We illustrate our results both by application to existing nonparametric models and by construction of a model on infinite permutations.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Gatsby Computational Neurosci Unit
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by