UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Influence of combustion characteristics and fuel composition on exhaust PAHs in a compression ignition engine
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Dandajeh HA, Talibi M, Ladommatos N, Hellier P
  • Publication date:
    01/07/2019
  • Journal:
    Energies
  • Volume:
    12
  • Issue:
    13
  • Status:
    Published
Abstract
© 2019 by the authors. This paper reports an experimental investigation into the effects of fuel composition on the exhaust emission of toxic polycyclic aromatic hydrocarbons (PAHs) from a diesel engine, operated at both constant fuel injection and constant fuel ignition modes. The paper quantifies the US EPA (United State Environmental Protection Agency) 16 priority PAHs produced from combustion of fossil diesel fuel and several model fuel blends of n-heptane, toluene and methyl decanoate in a single-cylinder diesel research engine based on a commercial light duty automotive engine. It was found that the level of total PAHs emitted by the various fuel blends decreased with increasing fuel ignition delay and premixed burn fraction, however, where the ignition delay of a fuel blend was decreased with use of an ignition improving additive the level of particulate phase PAH also decreased. Increasing the level of toluene present in the fuel blends decreased levels of low toxicity of two to four ring PAH, while displacing n-heptane with methyl decanoate increased particulate phase adsorbed PAH. Overall, the composition of the fuels investigated was found to have more influence on the concentration of exhaust PAHs formed than that of combustion characteristics, including ignition delay, peak heat release rate and the extent of the premixed burn fractions.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Mechanical Engineering
Author
Dept of Mechanical Engineering
Author
Dept of Mechanical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by