UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Detecting cyberbullying and cyberaggression in social media
Abstract
© 2019 Association for Computing Machinery. All rights reserved. Cyberbullying and cyberaggression are increasingly worrisome phenomena affecting people across all demographics. More than half of young social media users worldwide have been exposed to such prolonged and/or coordinated digital harassment. Victims can experience a wide range of emotions, with negative consequences such as embarrassment, depression, isolation from other community members, which embed the risk to lead to even more critical consequences, such as suicide attempts. In this work, we take the first concrete steps to understand the characteristics of abusive behavior in Twitter, one of today's largest social media platforms. We analyze 1.2 million users and 2.1 million tweets, comparing users participating in discussions around seemingly normal topics like the NBA, to those more likely to be hate-related, such as the Gamergate controversy, or the gender pay inequality at the BBC station. We also explore specific manifestations of abusive behavior, i.e., cyberbullying and cyberaggression, in one of the hate-related communities (Gamergate). We present a robust methodology to distinguish bullies and aggressors from normal Twitter users by considering text, user, and network-based attributes. Using various state-of-The-Art machine-learning algorithms, we classify these accounts with over 90% accuracy and AUC. Finally, we discuss the current status of Twitter user accounts marked as abusive by our methodology and study the performance of potential mechanisms that can be used by Twitter to suspend users in the future.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by