UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Convolutional neural networks for reconstruction of undersampled optical projection tomography data applied to in vivo imaging of zebrafish
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Davis SPX, Kumar S, Alexandrov Y, Bhargava A, da Silva Xavier G, Rutter GA, Frankel P, Sahai E, Flaxman S, French PMW, McGinty J
  • Publisher:
    Wiley-VCH Verlag
  • Publication date:
    06/08/2019
  • Pagination:
    e201900128
  • Journal:
    Journal of Biophotonics
  • Status:
    Published online
  • Country:
    Germany
  • Print ISSN:
    1864-063X
  • Language:
    eng
  • Keywords:
    neural networks, optical tomography, preclinical imaging
Abstract
Optical projection tomography (OPT) is a 3D mesoscopic imaging modality that can utilize absorption or fluorescence contrast. 3D images can be rapidly reconstructed from tomographic data sets sampled with sufficient numbers of projection angles using the Radon transform, as is typically implemented with optically cleared samples of the mm-to-cm scale. For in vivo imaging, considerations of phototoxicity and the need to maintain animals under anesthesia typically preclude the acquisition of OPT data at a sufficient number of angles to avoid artifacts in the reconstructed images. For sparse samples, this can be addressed with iterative algorithms to reconstruct 3D images from undersampled OPT data, but the data processing times present a significant challenge for studies imaging multiple animals. We show here that convolutional neural networks (CNN) can be used in place of iterative algorithms to remove artifacts - reducing processing time for an undersampled in vivo zebrafish dataset from 77 to 15 minutes. We also show that using CNN produces reconstructions of equivalent quality to CS with 40% fewer projections. We further show that diverse training data classes, for example ex vivo mouse tissue data, can be used for CNN-based reconstructions of OPT data of other species including live zebrafish. This article is protected by copyright. All rights reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Metabolism & Experi Therapeutics
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by