UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Ergodicity-Breaking in Thermal Biological Electron Transfer? Cytochrome C Revisited.
Abstract
It was recently suggested that certain redox proteins operate in an ergodicity-breaking regime to facilitate biological electron transfer (ET). A signature for this is a large variance reorganization free energy (several electronvolts) but a significantly smaller Stokes reorganization free energy due to incomplete protein relaxation on the time scale of the ET event. Here we investigate whether this picture holds for oxidation of cytochrome c in aqueous solution, at various levels of theory including classical molecular dynamics with two additive and one electronically polarizable force field, and QM/MM calculations with the QM region treated by full electrostatic DFT embedding and by the perturbed matrix method. Sampling the protein and energy gap dynamics over more than 250 ns, we find no evidence for ergodicity-breaking effects. In particular, the inclusion of electronic polarizability of the heme group at QM/MM levels did not induce nonergodic effects, contrary to previous reports by Matyushov et al. The well-known problem of overestimation of reorganization free energies with additive force fields is cured when the protein and solvent are treated as electronically polarizable. Ergodicity-breaking effects may occur in other redox proteins, and our results suggest that long simulations, ideally on the ET time scale, with electronically polarizable force fields are required to obtain strong numerical evidence for them.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Physics & Astronomy
Author
Dept of Physics & Astronomy
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by