UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Twenty years on: Myoclonus-dystonia and ε-sarcoglycan — neurodevelopment, channel, and signaling dysfunction
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Review
  • Authors:
    Menozzi E, Balint B, Latorre A, Valente EM, Rothwell JC, Bhatia KP
  • Publication date:
    26/08/2019
  • Journal:
    Movement Disorders
  • Status:
    Published
  • Print ISSN:
    0885-3185
Abstract
© 2019 International Parkinson and Movement Disorder Society Myoclonus-dystonia is a clinical syndrome characterized by a typical childhood onset of myoclonic jerks and dystonia involving the neck, trunk, and upper limbs. Psychiatric symptomatology, namely, alcohol dependence and phobic and obsessive-compulsive disorder, is also part of the clinical picture. Zonisamide has demonstrated effectiveness at reducing both myoclonus and dystonia, and deep brain stimulation seems to be an effective and long-lasting therapeutic option for medication-refractory cases. In a subset of patients, myoclonus-dystonia is associated with pathogenic variants in the epsilon-sarcoglycan gene, located on chromosome 7q21, and up to now, more than 100 different pathogenic variants of the epsilon-sarcoglycan gene have been described. In a few families with a clinical phenotype resembling myoclonus-dystonia associated with distinct clinical features, variants have been identified in genes involved in novel pathways such as calcium channel regulation and neurodevelopment. Because of phenotypic similarities with epsilon-sarcoglycan gene–related myoclonus-dystonia, these conditions can be collectively classified as “myoclonus-dystonia syndromes.” In the present article, we present myoclonus-dystonia caused by epsilon-sarcoglycan gene mutations, with a focus on genetics and underlying disease mechanisms. Second, we review those conditions falling within the spectrum of myoclonus-dystonia syndromes, highlighting their genetic background and involved pathways. Finally, we critically discuss the normal and pathological function of the epsilon-sarcoglycan gene and its product, suggesting a role in the stabilization of the dopaminergic membrane via regulation of calcium homeostasis and in the neurodevelopmental process involving the cerebello-thalamo-pallido-cortical network. © 2019 International Parkinson and Movement Disorder Society.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Clinical and Movement Neurosciences
Author
UCL Queen Square Institute of Neurology
Author
Clinical and Movement Neurosciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by