UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Individual differences in parietal and frontal cortex structure predict dissociable capacities for perception and cognitive control.
Abstract
Capacity limits in perception can lead to failures of awareness in situations that overload capacity, resulting in various phenomena of 'inattentional blindness'. In contrast, capacity limits in cognitive control over attention by working memory lead to increased processing of irrelevant distractors (reduced inattentional blindness). Here, using Voxel-Based Morphometry combined with Principal Components Analysis, we establish distinct brain-structural correlates of perceptual capacity, dissociable from those of cognitive control. Perceptual capacity was measured as the principal component accounting for variance across tasks of multiple object tracking, change blindness and rapid visual enumeration (i.e. 'subitizing'). Cognitive control capacity was measured as the principal component underlying performance of three different complex working memory span tasks (involving spatial, semantic and numerical domains). Volumetric differences in the right Inferior Parietal Lobule (IPL) were predictive of individual differences in perceptual capacity, while volumetric differences in left Middle Frontal Gyrus (MFG) (as well as lateral frontal and posterior cingulate cortex in a non-parametric analysis) were predictive of individual differences in cognitive control capacity. IPL remained a significant predictor of perceptual capacity when controlling for variance accounted for by cognitive control capacity and vice versa for the neural correlates of cognitive control. These results suggest that perceptual and cognitive control capacities represent dissociable and lasting, trait-like attributes which can be predicted from distinct signatures in regional grey matter.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Institute of Cognitive Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by