UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Experimental validation of k-Wave: Nonlinear wave propagation in layered, absorbing fluid media.
Abstract
Models of ultrasound propagation in biologically relevant media have applications in planning and verification of ultrasound therapies and computational dosimetry. To be effective, the models must be able to accurately predict both the spatial distribution and amplitude of the acoustic pressure. This requires that the models are validated in absolute terms, which for arbitrarily heterogeneous media should be performed by comparison with measurements of the acoustic field. In this study, simulations performed using the open-source k-Wave acoustics toolbox, with a measurement-based source definition, were quantitatively validated against measurements of acoustic pressure in water and layered absorbing fluid media. In water, the measured and simulated spatial peak pressures agreed to within 3% under linear conditions and 7% under non-linear conditions. After propagation through a planar or wedge shaped glycerol-filled phantom, the difference in spatial peak pressure was 8.5% and 10.7%, respectively. These differences are within or close to the expected uncertainty of the acoustic pressure measurement. The -6 dB width and length of the focus agreed to within 4% in all cases, and the focal positions were within 0.7 mm for the planar phantom and 1.2 mm for the wedge shaped phantom. These results demonstrate that when the acoustic medium properties and geometry are well known, accurate quantitative predictions of the acoustic field can be made using k-Wave.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by