UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Multimodal characterization of the visual network in Huntington's disease gene carriers
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Gregory S, Odish OFF, Mayer I, Mills J, Johnson EB, Scahill RI, Rothwell J, Rees G, Long JD, Tabrizi SJ, Roos RAC, Orth M
  • Publication date:
    01/11/2019
  • Pagination:
    2053, 2059
  • Journal:
    Clinical Neurophysiology
  • Volume:
    130
  • Issue:
    11
  • Status:
    Accepted
  • Print ISSN:
    1388-2457
Abstract
© 2019 Objective: A sensorimotor network structural phenotype predicted motor task performance in a previous study in Huntington's disease (HD) gene carriers. We investigated in the visual network whether structure – function – behaviour relationship patterns, and the effects of the HD mutation, extended beyond the sensorimotor network. Methods: We used multimodal visual network MRI structural measures (cortical thickness and white matter connectivity), plus visual evoked potentials and task performance (Map Search; Symbol Digit Modalities Test) in healthy controls and HD gene carriers. Results: Using principal component (PC) analysis, we identified a structure – function relationship common to both groups. PC scores differed between groups indicating white matter disorganization (higher RD, lower FA) and slower, and more disperse, VEP signal transmission (higher VEP P100 latency and lower VEP P100 amplitude) in HD than controls while task performance was similar. Conclusions: HD may be associated with reduced white matter organization and efficient visual network function but normal task performance. Significance: These findings indicate that structure – function relationships in the visual network, and the effects of the HD mutation, share some commonalities with those in the sensorimotor network. However, implications for task performance differ between the two networks suggesting the influence of network specific factors.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Vice-Provost (Research, Innovation and Global Engagement)
Author
Clinical and Movement Neurosciences
Author
Neurodegenerative Diseases
Author
Neurodegenerative Diseases
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by