UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
ElasticMatrix: A MATLAB toolbox for anisotropic elastic wave propagation in layered media
Abstract
© 2020 The Authors Simulating the propagation of elastic waves in multi-layered media has many applications. A common approach is to use matrix methods where the elastic wave-field within each material layer is represented by a sum of partial-waves along with boundary conditions imposed at each interface. While these methods are well-known, coding the required matrix formation, inversion, and analysis for general multi-layered systems is non-trivial and time-consuming. Here, a new open-source toolbox called ElasticMatrix is described which solves the problem of acoustic and elastic wave propagation in multi-layered media for isotropic and transverse-isotropic materials where the wave propagation occurs in a material plane of symmetry. The toolbox is implemented in MATLAB using an object oriented programming framework and is designed to be easy to use and extend. Methods are provided for calculating and plotting dispersion curves, displacement and stress fields, reflection and transmission coefficients, and slowness profiles.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by