Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Glycine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database
The inhibitory glycine receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on Glycine Receptors) is a member of the Cys-loop superfamily of transmitter-gated ion channels that includes the zinc activated channels, GABAA, nicotinic acetylcholine and 5-HT3 receptors [63]. The receptor is expressed either as a homo-pentamer of α subunits, or a complex now thought to harbour 2α and 3β subunits [30, 7], that contain an intrinsic anion channel. Four differentially expressed isoforms of the α-subunit (α1-α4) and one variant of the β-subunit (β1, GLRB, P48167) have been identified by genomic and cDNA cloning. Further diversity originates from alternative splicing of the primary gene transcripts for α1 (α1INS and α1del), α2 (α2A and α2B), α3 (α3S and α3L) and β (βΔ7) subunits and by mRNA editing of the α2 and α3 subunit [80, 91, 18]. Both α2 splicing and α3 mRNA editing can produce subunits (i.e., α2B and α3P185L) with enhanced agonist sensitivity. Predominantly, the mature form of the receptor contains α1 (or α3) and β subunits while the immature form is mostly composed of only α2 subunits. RNA transcripts encoding the α4-subunit have not been detected in adult humans. The N-terminal domain of the α-subunit contains both the agonist and strychnine binding sites that consist of several discontinuous regions of amino acids. Inclusion of the β-subunit in the pentameric glycine receptor contributes to agonist binding, reduces single channel conductance and alters pharmacology. The β-subunit also anchors the receptor, via an amphipathic sequence within the large intracellular loop region, to gephyrin. The latter is a cytoskeletal attachment protein that binds to a number of subsynaptic proteins involved in cytoskeletal structure and thus clusters and anchors hetero-oligomeric receptors to the synapse [86, 51, 53]. G-protein βγ subunits enhance the open state probability of native and recombinant glycine receptors by association with domains within the large intracellular loop [122, 121]. Intracellular chloride concentration modulates the kinetics of native and recombinant glycine receptors [94]. Intracellular Ca2+ appears to increase native and recombinant glycine receptor affinity, prolonging channel open events, by a mechanism that does not involve phosphorylation [24].
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Neuro, Physiology & Pharmacology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by