Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Clinical and genetic spectrum in 33 Egyptian families with suspected primary ciliary dyskinesia
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Fassad MR, Shoman WI, Morsy H, Patel MP, Radwan N, Jenkins L, Cullup T, Fouda E, Mitchison HM, Fasseeh N
  • Publication date:
  • Journal:
    Clinical Genetics
  • Status:
    Published online
  • Country:
  • Language:
  • Keywords:
    Egypt, Genetics, Phenotype, Primary ciliary dyskinesia
Primary ciliary dyskinesia (PCD) is a rare genetic disorder of motile cilia dysfunction generally inherited as an autosomal recessive disease. Genetic testing is increasingly considered an early step in the PCD diagnostic workflow. We used targeted panel next generation sequencing (NGS) for genetic screening of 33 Egyptian families with highly clinically suspected PCD. All variants prioritized were Sanger confirmed in the affected individuals and correctly segregated within the family. Targeted NGS yielded a high diagnostic output (70%) with bi-allelic mutations identified in known PCD genes. Mutations were identified in 13 genes overall, with CCDC40 and CCDC39 the most frequently mutated genes among Egyptian patients. Most identified mutations were predicted null effect variants (79%) and not reported before (85%). This study reveals that the genetic landscape of PCD among Egyptians is highly heterogeneous, indicating that a targeted NGS approach covering multiple genes will provide a superior diagnostic yield than Sanger sequencing for genetic diagnosis. The high diagnostic output achieved here highlights the potential of placing genetic testing early within the diagnostic workflow for PCD, in particular in developing countries where other diagnostic tests can be less available. This article is protected by copyright. All rights reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Genetics & Genomic Medicine Dept
Genetics & Genomic Medicine Dept
Department of Neuromuscular Diseases
MRC Prion Unit at UCL
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by