Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Adaptive Gaussian process emulators for efficient reliability analysis
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Hristov PO, DiazDelaO FA, Farooq U, Kubiak KJ
  • Publication date:
  • Pagination:
    138, 151
  • Journal:
    Applied Mathematical Modelling
  • Volume:
  • Status:
  • Print ISSN:
© 2019 Elsevier Inc. This paper presents an approximation method for performing efficient reliability analysis with complex computer models. The computational cost of industrial-scale models can cause problems when performing sampling-based reliability analysis. This is due to the fact that the failure modes of the system typically occupy a small region of the performance space and thus require relatively large sample sizes to accurately estimate their characteristics. The sequential sampling method proposed in this article, combines Gaussian process-based optimisation and subset simulation. Gaussian process emulators construct a statistical approximation to the output of the original code, which is both affordable to use and has its own measure of predictive uncertainty. Subset simulation is used as an integral part of the algorithm to efficiently populate those regions of the surrogate which are likely to lead to the performance function exceeding a predefined critical threshold. The emulator itself is used to inform decisions about efficiently using the original code to augment its predictions. The iterative nature of the method ensures that an arbitrarily accurate approximation of the failure region is developed at a reasonable computational cost. The presented method is applied to an industrial model of a biodiesel filter.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Clinical Operational Research Unit
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by