UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Investigation on the extensibility of the wood cell-wall composite by an approach based on homogenisation and uncertainty analysis
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Saavedra Flores EI, DiazDelaO FA, Friswell MI, Ajaj RM
  • Publication date:
    01/01/2014
  • Pagination:
    212, 222
  • Journal:
    Composite Structures
  • Volume:
    108
  • Issue:
    1
  • Status:
    Published
  • Print ISSN:
    0263-8223
Abstract
This paper investigates the extensibility of the wood cell-wall composite in the presence of parametric uncertainty by means of a multi-scale finite element approach. Normally, the three fundamental phases in wood, that is, cellulose, lignin and hemicellulose, present considerable scatter in their microstructure and mechanical properties. Nevertheless, by considering uncertainty in their properties, a significant computational cost is added to the solution of a large set of realisations represented by expensive fully-coupled multi-scale analyses. In order to tackle this high cost, we build a statistical approximation to the output of the computer model. Following this strategy, several micromechanical parameters are perturbed to study their influence on the extensibility of the material under tensile loading conditions. By reducing the cost of performing uncertainty analysis of the homogenised mechanical response, we are able to estimate the 5-th, 50-th, and 95-th percentile of the ultimate tensile strains of the material. We contrast our numerical predictions with experimental data, finding a good agreement for a wide range of initial microfibril angles. © 2013 Elsevier Ltd.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Clinical Operational Research Unit
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by