Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The nonplanar secretory IgA2 and near planar secretory IgA1 solution structures rationalize their different mucosal immune responses.
-
Publication Type:Journal article
-
Publication Sub Type:Journal Article
-
Authors:Bonner A, Almogren A, Furtado PB, Kerr MA, Perkins SJ
-
Publication date:20/02/2009
-
Pagination:5077, 5087
-
Journal:J Biol Chem
-
Volume:284
-
Issue:8
-
Status:Published
-
Country:United States
-
Print ISSN:0021-9258
-
PII:S0021-9258(20)70967-1
-
Language:eng
-
Keywords:Antigens, Dimerization, Female, Humans, Immunity, Mucosal, Immunoglobulin A, Secretory, Immunoglobulin Fab Fragments, Immunoglobulin Fc Fragments, Models, Molecular, Peptide Hydrolases, Protein Structure, Quaternary, Protein Structure, Tertiary
-
Author URL:
Abstract
Secretory IgA (SIgA) is the most prevalent human antibody and is central to mucosal immunity. It exists as two subclasses, SIgA1 and SIgA2, where SIgA2 has a shorter hinge joining the Fab and Fc regions. Both forms of SIgA are predominantly dimeric and contain an additional protein called the secretory component (SC) that is attached during the secretory process and is believed to protect SIgA in harsh mucosal conditions. Here we locate the five SC domains relative to dimeric IgA2 within SIgA2 using constrained scattering modeling. The x-ray and sedimentation parameters showed that SIgA2 has an extended solution structure. The constrained modeling of SIgA2 was initiated using two IgA2 monomers that were positioned according to our best fit solution structure for dimeric IgA1. SC was best located along the convex edge of the Fc-Fc region. The best fit models showed that SIgA2 is significantly nonplanar in its structure, in distinction to our previous near planar SIgA1 structure. Both the shorter IgA2 hinges and the presence of SC appear to displace the four Fab regions out of the Fc plane in SIgA2. This may explain the noncovalent binding of SC in some SIgA2 molecules. This nonplanar structure is predicted to result in specific immune properties for SIgA2 and SIgA1. It may explain differences observed between the SIgA1 and SIgA2 subclasses in terms of their interactions with antigens, susceptibility to proteases, effects on receptors, and distribution in different tissues. The different structures account for the prevalence of both forms in mucosal secretions.
› More search options
UCL Researchers