UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A percolation model for the emergence of the Bitcoin Lightning Network
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Bartolucci S, Caccioli F, Vivo P
  • Publication date:
    11/03/2020
  • Journal:
    Scientific Reports
  • Volume:
    10
  • Issue:
    1
  • Status:
    Accepted
Abstract
© 2020, The Author(s). The Lightning Network is a so-called second-layer technology built on top of the Bitcoin blockchain to provide “off-chain” fast payment channels between users, which means that not all transactions are settled and stored on the main blockchain. In this paper, we model the emergence of the Lightning Network as a (bond) percolation process and we explore how the distributional properties of the volume and size of transactions per user may impact its feasibility. The agents are all able to reciprocally transfer Bitcoins using the main blockchain and also – if economically convenient – to open a channel on the Lightning Network and transact “off chain”. We base our approach on fitness-dependent network models: as in real life, a Lightning channel is opened with a probability that depends on the “fitness” of the concurring nodes, which in turn depends on wealth and volume of transactions. The emergence of a connected component is studied numerically and analytically as a function of the parameters, and the phase transition separating regions in the phase space where the Lightning Network is sustainable or not is elucidated. We characterize the phase diagram determining the minimal volume of transactions that would make the Lightning Network sustainable for a given level of fees or, alternatively, the maximal cost the Lightning ecosystem may impose for a given average volume of transactions. The model includes parameters that could be in principle estimated from publicly available data once the evolution of the Lighting Network will have reached a stationary operable state, and is fairly robust against different choices of the distributions of parameters and fitness kernels.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by