Please report any queries concerning the funding data grouped in the
sections named
"Externally Awarded"
or
"Internally Disbursed"
(shown on the profile page) to your Research Finance Administrator.
Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php
by entering your department
Please report any queries concerning the student data shown on the
profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Polyurethane insulation and household products – A systematic review of their impact on indoor environmental quality
-
Publication Type:Journal article
-
Publication Sub Type:Review
-
Authors:Naldzhiev D, Mumovic D, Strlic M
-
Publication date:01/02/2020
-
Journal:Building and Environment
-
Volume:169
-
Status:Accepted
-
Print ISSN:0360-1323
-
Full Text URL:
Abstract
© 2019 Elsevier Ltd We systematically review the impact of polyurethane insulation and polyurethane household products on the indoor environmental quality of buildings. The review breaks down polyurethane products into constituent compounds (isocyanate, polyol, flame retardant, blowing agent and catalyst) as well as secondary emissions, and discusses their implications on human health. Concentrations of compounds emitted from insulation, and household materials, measured in laboratory experiments and case studies are presented in the context of the built environment. We outline that isocyanate exposure over the current legal limits could take place during spray foam insulation application in the absence of personal protection equipment. The study reports that flame retardants are not chemically bound to polyurethane products and they are found in measurable concentrations in indoor environments. Additionally, we provide evidence that catalysts are responsible for at least some negative impact on perceived indoor air quality. More data is required to determine the long-term emissions from spray foam products and the ventilation strategies required to balance energy savings, thermal comfort and good indoor air quality. However, it is not yet possible to determine whether potential health impacts could result from exposure to a single compound or a combination of compounds from spray foam products. We present a risk matrix for polyurethane compounds and propose that flame retardants, by-products, and residual compounds are particularly important for indoor air quality. We conclude by suggesting a framework for further research.
› More
search options
UCL Researchers