Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The role of background statistics in face adaptation.
-
Publication Type:Journal article
-
Publication Sub Type:Comparative Study
-
Authors:Wu J, Xu H, Dayan P, Qian N
-
Publication date:30/09/2009
-
Pagination:12035, 12044
-
Journal:J Neurosci
-
Volume:29
-
Issue:39
-
Status:Published
-
Country:United States
-
PII:29/39/12035
-
Language:eng
-
Keywords:Adaptation, Physiological, Contrast Sensitivity, Emotions, Facial Expression, Form Perception, Humans, Motion Perception, Photic Stimulation
-
Author URL:
-
Full Text URL:
Abstract
Cross-adaptation is widely used to probe whether different stimuli share common neural mechanisms. For example, that adaptation to second-order stimuli usually produces little aftereffect on first-order stimuli has been interpreted as reflecting their separate processing. However, such results appear to contradict the cue-invariant responses of many visual cells. We tested the novel hypothesis that the null aftereffect arises from the large difference in the backgrounds of first- and second-order stimuli. We created second-order faces with happy and sad facial expressions specified solely by local directions of moving random dots on a static-dot background, without any luminance-defined form cues. As expected, adaptation to such a second-order face did not produce a facial-expression aftereffect on the first-order faces. However, consistent with our hypothesis, simply adding static random dots to the first-order faces to render their backgrounds more similar to that of the adapting motion face led to a significant aftereffect. This background similarity effect also occurred between different types of first-order stimuli: real-face adaptation transferred to cartoon faces only when noise with correlation statistics of real faces or natural images was added to the cartoon faces. These findings suggest the following: (1) statistical similarities between the featureless backgrounds of the adapting and test stimuli can influence aftereffects, as in contingent adaptation; (2) weak or null cross-adaptation aftereffects should be interpreted with caution; and (3) luminance- and motion-direction-defined forms, and local features and global statistics, converge in the representation of faces.
› More search options
There are no UCL People associated with this publication