UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Failed gene conversion leads to extensive end processing and chromosomal rearrangements in fission yeast.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Tinline-Purvis H, Savory AP, Cullen JK, Davé A, Moss J, Bridge WL, Marguerat S, Bähler J, Ragoussis J, Mott R, Walker CA, Humphrey TC
  • Publication date:
    04/11/2009
  • Pagination:
    3400, 3412
  • Journal:
    EMBO J
  • Volume:
    28
  • Issue:
    21
  • Status:
    Published
  • Country:
    England
  • PII:
    emboj2009265
  • Language:
    eng
  • Keywords:
    Adenosine Triphosphatases, Centromere, Chromosomes, Fungal, DNA Breaks, Double-Stranded, DNA-Binding Proteins, Gene Conversion, Loss of Heterozygosity, Rad51 Recombinase, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Abstract
Loss of heterozygosity (LOH), a causal event in cancer and human genetic diseases, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms by which such extensive LOH arises, and how it is suppressed in normal cells is poorly understood. We have developed a genetic system to investigate the mechanisms of DNA double-strand break (DSB)-induced extensive LOH, and its suppression, using a non-essential minichromosome, Ch(16), in fission yeast. We find extensive LOH to arise from a new break-induced mechanism of isochromosome formation. Our data support a model in which Rqh1 and Exo1-dependent end processing from an unrepaired DSB leads to removal of the broken chromosome arm and to break-induced replication of the intact arm from the centromere, a considerable distance from the initial lesion. This process also promotes genome-wide copy number variation. A genetic screen revealed Rhp51, Rhp55, Rhp57 and the MRN complex to suppress both isochromosome formation and chromosome loss, in accordance with these events resulting from extensive end processing associated with failed homologous recombination repair.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Genetics, Evolution & Environment
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by