Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
C-reactive protein exists in an NaCl concentration-dependent pentamer-decamer equilibrium in physiological buffer.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Okemefuna AI, Stach L, Rana S, Buetas AJZ, Gor J, Perkins SJ
  • Publication date:
  • Pagination:
    1041, 1052
  • Journal:
    J Biol Chem
  • Volume:
  • Issue:
  • Status:
  • Country:
    United States
  • PII:
  • Language:
  • Keywords:
    Acute-Phase Reaction, Buffers, C-Reactive Protein, Calcium, Humans, Protein Multimerization, Protein Structure, Quaternary, Sodium Chloride
C-reactive protein (CRP) is an acute phase protein of the pentraxin family that binds ligands in a Ca(2+)-dependent manner, and activates complement. Knowledge of its oligomeric state in solution and at surfaces is essential for functional studies. Analytical ultracentrifugation showed that CRP in 2 mM Ca(2+) exhibits a rapid pentamer-decamer equilibrium. The proportion of decamer decreased with an increase in NaCl concentration. The sedimentation coefficients s(20,w)(0) of pentameric and decameric CRP were 6.4 S and in excess of 7.6 S, respectively. In the absence of Ca(2+), CRP partially dissociates into its protomers and the NaCl concentration dependence of the pentamer-decamer equilibrium is much reduced. By x-ray scattering, the radius of gyration R(G) values ranged from 3.7 nm for the pentamer to above 4.0 nm for the decamer. An averaged K(D) value of 21 microM in solution (140 mM NaCl, 2 mM Ca(2+)) was determined by x-ray scattering and modeling based on crystal structures for the pentamer and decamer. Surface plasmon resonance showed that CRP self-associates on a surface with immobilized CRP with a similar K(D) value of 23 microM (140 mM NaCl, 2 mM Ca(2+)), whereas CRP aggregates in low salt. It is concluded that CRP is reproducibly observed in a pentamer-decamer equilibrium in physiologically relevant concentrations both in solution and on surfaces. Both 2 mM Ca(2+) and 140 mM NaCl are essential for the integrity of CRP in functional studies and understanding the role of CRP in the acute phase response.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Div of Biosciences
Structural & Molecular Biology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by