UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Degenerative adversarial neuroimage nets for brain scan simulations: Application in ageing and dementia
  • Publication Type:
    Journal article
  • Authors:
    Ravi D, Blumberg SB, Ingala S, Barkhof F, Alexander DC, Oxtoby NP, Alzheimer’s Disease Neuroimaging Initiative
  • Publication date:
    14/10/2021
  • Journal:
    Medical Image Analysis
  • Volume:
    75
  • Article number:
    102257
  • Status:
    Published
  • Country:
    Netherlands
  • PII:
    S1361-8415(21)00302-9
  • Language:
    English
  • Keywords:
    4D-DANI-Net, 4D-MRI, Adversarial training, Ageing, Brain, Dementia, Disease progression modelling, Generative models, Neuro-image, Neurodegeneration, Synthetic-images
  • Notes:
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Abstract
Accurate and realistic simulation of high-dimensional medical images has become an important research area relevant to many AI-enabled healthcare applications. However, current state-of-the-art approaches lack the ability to produce satisfactory high-resolution and accurate subject-specific images. In this work, we present a deep learning framework, namely 4D-Degenerative Adversarial NeuroImage Net (4D-DANI-Net), to generate high-resolution, longitudinal MRI scans that mimic subject-specific neurodegeneration in ageing and dementia. 4D-DANI-Net is a modular framework based on adversarial training and a set of novel spatiotemporal, biologically-informed constraints. To ensure efficient training and overcome memory limitations affecting such high-dimensional problems, we rely on three key technological advances: i) a new 3D training consistency mechanism called Profile Weight Functions (PWFs), ii) a 3D super-resolution module and iii) a transfer learning strategy to fine-tune the system for a given individual. To evaluate our approach, we trained the framework on 9852 T1-weighted MRI scans from 876 participants in the Alzheimer's Disease Neuroimaging Initiative dataset and held out a separate test set of 1283 MRI scans from 170 participants for quantitative and qualitative assessment of the personalised time series of synthetic images. We performed three evaluations: i) image quality assessment; ii) quantifying the accuracy of regional brain volumes over and above benchmark models; and iii) quantifying visual perception of the synthetic images by medical experts. Overall, both quantitative and qualitative results show that 4D-DANI-Net produces realistic, low-artefact, personalised time series of synthetic T1 MRI that outperforms benchmark models.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Computer Science
Author
Dept of Computer Science
Author
Brain Repair & Rehabilitation
Author
Dept of Computer Science
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by