Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Responses of type I cells dissociated from the rabbit carotid body to hypoxia.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Biscoe TJ, Duchen MR
  • Publication date:
  • Pagination:
    39, 59
  • Journal:
    J Physiol
  • Volume:
  • Status:
  • Country:
  • Print ISSN:
  • Language:
  • Keywords:
    Action Potentials, Animals, Calcium, Carotid Body, Cell Hypoxia, Fluorescence, Mitochondria, Rabbits, Sodium Cyanide
1. The carotid body chemoreceptors are stimulated in situ by hypoxia. We have studied type I cells freshly dissociated from the carotid body of the rabbit. We have used microfluorimetric and patch clamp techniques to examine the responses to hypoxia, to anoxia, and to metabolic inhibition. 2. NADH autofluorescence measured at both 400 and 500 nm increased rapidly and reversibly in response to anoxia or to cyanide (CN-), reflecting a change in mitochondrial metabolism. 3. Indo-1 was used to measure changes in intracellular calcium, [Ca2+]i. Anoxia reversibly increased [Ca2+]i from approximately 50-100 to approximately 200-450 nM in all cells tested. The response showed a striking temperature sensitivity. Responses to hypoxic stimuli were barely detectable at 17-20 degrees C, and were dramatically increased on warming to 36 degrees C. In contrast, responses to K(+)-induced depolarization were only slightly increased in rate of onset and recovery by warming. 4. The rise in [Ca2+]i originated largely from an intracellular store which was slowly depleted by exposure to nominally Ca2(+)-free solutions. Responses were unaffected by blockade of Ca2+ channels with organic (D600, verapamil) or inorganic (Co2+) blockers, by blockade of Na+ channels with tetrodotoxin (TTX), or by increasing action potential duration with tetraethylammonium (TEA). Responses to anoxia were increased by the increased [Ca2+]i loading that follows prior exposure to Ca2(+)-free solutions. 5. Responses to anoxia, to blockade of electron transport by CN-, and to the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP), were equivalent in amplitude. The response to anoxia was occluded by concurrent application of FCCP, suggesting that the Ca2+ originates from the same pool in each case. 6. At 35-36 degrees C, responses to graded levels of PO2 were also graded. Thresholds varied between cells, but were typically 30-50 mmHg. Stimulus-responses curves were essentially hyperbolic, increasing dramatically as the PO2 approached 0 mmHg. 7. The sensitivity of cells to hypoxic solutions was increased by acidification of the superfusate over the pH range from 7.3 to 6.85. 8. Cell-attached patch clamp recordings showed depression of spontaneous action potentials associated with a rise in [Ca2+]i during exposure to anoxic solutions. Whole-cell recordings showed that anoxia increased a voltage-gated gK as described previously for CN-, while producing no change in resting conductance. 9. These data suggest that the rise in [Ca2+]i originates largely from Ca2+ efflux from a mitochondrial pool.(ABSTRACT TRUNCATED AT 400 WORDS)
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Cell & Developmental Biology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by