UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Annexin A8 regulates Wnt signaling to maintain the phenotypic plasticity of retinal pigment epithelial cells.
Abstract
Wnt signalling mediates complex cell-cellinteractions during development and proliferation. Annexin A8 (AnxA8), a calcium-dependent phospholipid-binding protein, and canonical Wnt signalling mechanisms have both been implicated in retinal pigment epithelial (RPE) cell differentiation. The aim here was to examine the possibility of cross-talk between AnxA8 and Wnt signalling, as both are down-regulated upon fenretinide (FR)-mediated RPE transdifferentiation. AnxA8 suppression in RPE cells via siRNA or administration of FR induced neuronal-like cell transdifferentiation and reduced expression of Wnt-related genes, as measured by real-time PCR and western blotting. AnxA8 gene expression, on the other hand, remained unaltered upon manipulating Wnt signalling, suggesting Wnt-related genes to be downstream effectors of AnxA8. Co-immunoprecipitation revealed an interaction between AnxA8 and β-catenin, which was reduced in the presence of activated TGF-β1. TGF-β1 signalling also reversed the AnxA8 loss-induced cell morphology changes, and induced β-catenin translocation and GSK-3β phosphorylation in the absence of AnxA8. Ectopic over-expression of AnxA8 led to an increase in active β-catenin and GSK-3β phosphorylation. These data demonstrate an important role for AnxA8 as a regulator of Wnt signalling and a determinant of RPE phenotype, with implications for regenerative medicine approaches that utilise stem cell-derived RPE cells to treat conditions such as age-related macular degeneration.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Institute of Ophthalmology
Author
Institute of Ophthalmology
Author
Institute of Ophthalmology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by