Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Acoustic Immunosensing of Exosomes Using a Quartz Crystal Microbalance with Dissipation Monitoring
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Suthar J, Parsons ES, Hoogenboom BW, Williams GR, Guldin S
  • Publisher:
    American Chemical Society
  • Publication date:
  • Pagination:
    4082, 4093
  • Journal:
    Analytical Chemistry
  • Volume:
  • Issue:
  • Status:
  • Country:
    United States
  • Print ISSN:
  • Language:
Exosomes are endocytic lipid-membrane bound bodies with the potential to be used as biomarkers in cancer and neurodegenerative disease. The limitations and scarcity of current exosome characterization approaches have led to a growing demand for translational techniques, capable of determining their molecular composition and physical properties in physiological fluids. Here, we investigate label-free immunosensing, using a quartz crystal microbalance with dissipation monitoring (QCM-D), to detect exosomes by exploiting their surface protein profile. Exosomes expressing the transmembrane protein CD63 were isolated by size-exclusion chromatography from cell culture media. QCM-D sensors functionalized with anti-CD63 antibodies formed a direct immunoassay toward CD63-positive exosomes in 75% v/v serum, exhibiting a limit-of-detection of 2.9 × 108 and 1.4 × 108 exosome sized particles (ESPs)/mL for frequency and dissipation response, respectively, i.e., clinically relevant concentrations. Our proof-of-concept findings support the adoption of dual-mode acoustic analysis of exosomes, leveraging both frequency and dissipation monitoring for use in bioanalytical characterization.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Dept of Chemical Engineering
Dept of Physics & Astronomy
Dept of Chemical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by