Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Measurements of intracellular Ca2+ in dissociated type I cells of the rabbit carotid body.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Biscoe TJ, Duchen MR, Eisner DA, O'Neill SC, Valdeolmillos M
  • Publication date:
  • Pagination:
    421, 434
  • Journal:
    J Physiol
  • Volume:
  • Status:
  • Country:
  • Print ISSN:
  • Language:
  • Keywords:
    Animals, Benzofurans, Calcium, Carbachol, Carotid Body, Cyanides, Fluorescent Dyes, Fura-2, Hydrogen-Ion Concentration, In Vitro Techniques, Membrane Potentials, Potassium, Rabbits, Sodium
1. The carotid body chemoreceptors are stimulated in situ by cyanide (CN-), which mimics the effect of hypoxia. We have shown that CN- increases a calcium-dependent potassium conductance (gK(Ca)) in single type I cells dissociated from the carotid body of the rabbit. We have now used the Ca2(+)-sensitive fluorophore, Fura-2, to measure intracellular Ca2+ directly in single type I cells. 2. CN- reversibly increased [Ca2+]i from approximately 90 nM to a mean of approximately 200 nM. Some of this Ca2+ originated from an intracellular store, which was depleted by exposure to Ca2(+)-free solutions. Prolonged application of CN- caused a sustained increase in [Ca2+]i, suggesting that CN- impairs the removal or sequestration of Ca2+. 3. pHi measured with the dye BCECF (2,7-bis(2-carboxyethyl)-5(and-6)-carboxyfluorescein) did not change consistently in response to CN-, although pHi changed predictably in response to both ammonium chloride and to acidification of the superfusate with CO2. 4. Potassium-induced depolarization (35 mM-K+) caused a large, cadmium-sensitive rise in [Ca2+]i. The K(+)-induced Ca2+ load was used to study the regulation of [Ca2+]i. 5. The clearance of a Ca2+ load was slowed either by removal of [Na+]o or by application of CN-. This shows that both a Na+-Ca2+ exchange and an energy-dependent process or processes contribute to the regulation of [Ca2+]i. 6. Carbachol (CCh, 10-100 microM), which also hyperpolarizes type I cells, caused a small transient rise in [Ca2+]i, indicating release from an exhaustible intracellular pool. The response to CN- was unaffected by prior or continued exposure to CCh, suggesting that the two stimuli operate by distinct mechanisms. 7. The increased gK(Ca) seen in type I cells in response to CN- thus reflects a change in cellular Ca2+ homeostasis. The rise in [Ca2+]i presumably underlies the documented increase in transmitter release from the carotid body in response to CN-. If chemotransduction is a consequence of the release of transmitters from the type I cell, the response of the carotid body to CN-, and possibly also to hypoxia, is thus a direct consequence of the energy dependence of Ca2+ homeostasis in the type I cell.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Cell & Developmental Biology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by