Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Thermodynamic and kinetic design principles for protein aggregation inhibitors
  • Publication Type:
    Working discussion paper
  • Authors:
    Michaels T, Šarić A, Meisl G, Heller G, Curk S, Arosio P, Linse S, Dobson C, Vendruscolo M, Knowles T
  • Publication date:
  • Status:
Understanding the mechanism of action of compounds capable of inhibiting protein aggregation is critical to the development of potential ther-apeutics against protein misfolding diseases. A fundamental challenge for progress is the range of possible target species and the disparate timescales involved, since the aggregating proteins are simultaneously the reactants, products, intermediates and catalysts of the reaction. It is a complex problem, therefore, to choose the states of the aggregating proteins that should be bound by the compounds to achieve the most potent inhibition. We present here a comprehensive kinetic theory of protein aggregation inhibition which reveals the fundamental thermodynamic and kinetic signatures characterising effective inhibitors by identifying quantitative relationships between the aggregation and binding rate constants. These results provide general physical laws to guide the design and optimisation of protein aggregation inhibitors.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Physics & Astronomy
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by