UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Sample selection, calibration and validation of models developed from a large dataset of near infrared spectra of tree leaves
Abstract
© The Author(s) 2020. Near infrared spectroscopy is widely used to rapidly and cost-effectively collect chemical information from plant samples. Large datasets with hundreds to thousands of spectra and reference values are increasingly becoming more common as researchers accumulate data over many years or across research groups. These datasets potentially contain great spectral and chemical variation and could produce a broadly-applicable calibration model. In this study, partial least squares regression was used to model relationships between near infrared spectra and the foliar concentration of two ecologically-important chemical traits, available nitrogen and total formylated phloroglucinol compounds in Eucalyptus leaves. The nested spatial structure within the extensive dataset of spectra and reference values from 80 species of Eucalyptus was taken into account during calibration development and model validation. Geographic variation amongst samples influenced how well available nitrogen could be predicted. Predictive error of the model was greatest when tested against samples from different Australian states and local government areas to the calibration set. In addition, the results showed that simply relying on spectral variation (assessed by Mahalanobis distance) may mislead researchers into how many reference values are needed. The prediction accuracy of the model of available nitrogen differed little whether 300 or up to 987 calibration samples were included, which indicated that an excessive number of reference values were obtained. Lastly, a suitable multi-species calibration for formylated phloroglucinol compounds was produced and the difficulties associated with predicting complex chemical traits were discussed. Directing effort towards broadly applicable models will encourage sharing of calibration models across projects and research groups and facilitate the integration of near infrared spectroscopy in many research fields.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Statistical Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by