Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Private Genomes and Public SNPs: Homomorphic Encryption of Genotypes and Phenotypes for Shared Quantitative Genetics
Sharing human genotype and phenotype data is essential in order to discover otherwise inaccessible genetic associations but is a challenge because of privacy concerns. Here we present a method of homomorphic encryption that obscures individuals' genotypes and phenotypes and is suited to quantitative genetic association analysis. Encrypted ciphertext and unencrypted plaintext are analytically interchangeable. The encryption uses a high-dimensional random linear orthogonal transformation key that leaves the likelihood of quantitative trait data unchanged under a linear model with normally distributed errors. It also preserves linkage disequilibrium between genetic variants and associations between variants and phenotypes. It scrambles relationships between individuals: encrypted genotype dosages closely resemble Gaussian deviates, and can be replaced by quantiles from a Gaussian with negligible effects on accuracy. Likelihood-based inferences are unaffected by orthogonal encryption. These include linear mixed models to control for unequal relatedness between individuals, heritability estimation, and including covariates when testing association. Orthogonal transformations can be applied in a modular fashion for multi-party federated mega-analyses where the parties first agree to share a common set of genotype sites and covariates prior to encryption. Each then privately encrypts and shares their own ciphertext, and analyses all parties' ciphertexts. In the absence of private variants, or knowledge of the key, we show that it is infeasible to decrypt ciphertext using existing brute-force or noise reduction attacks. We present the method as a challenge to the community to determine its security.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Genetics, Evolution & Environment
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by