UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Waseem NH, Low S, Shah AZ, Avisetti D, Ostergaard P, Simpson M, Niemiec KA, Martin-Martin B, Aldehlawi H, Usman S, Lee PS, Khawaja AP, Ruddle JB, Shah A, Sackey E, Day A, Jiang Y, Swinfield G, Viswanathan A, Alfano G, Chakarova C, Cordell HJ, Garway-Heath DF, Khaw PT, Bhattacharya SS, Waseem A, Foster PJ
  • Publication date:
    27/04/2020
  • Pagination:
    e1008721
  • Journal:
    PLoS Genet
  • Volume:
    16
  • Issue:
    4
  • Status:
    Published online
  • Country:
    United States
  • PII:
    PGENETICS-D-19-01423
  • Language:
    eng
Abstract
Current estimates suggest 50% of glaucoma blindness worldwide is caused by primary angle-closure glaucoma (PACG) but the causative gene is not known. We used genetic linkage and whole genome sequencing to identify Spermatogenesis Associated Protein 13, SPATA13 (NM_001166271; NP_001159743, SPATA13 isoform I), also known as ASEF2 (Adenomatous polyposis coli-stimulated guanine nucleotide exchange factor 2), as the causal gene for PACG in a large seven-generation white British family showing variable expression and incomplete penetrance. The 9 bp deletion, c.1432_1440del; p.478_480del was present in all affected individuals with angle-closure disease. We show ubiquitous expression of this transcript in cell lines derived from human tissues and in iris, retina, retinal pigment and ciliary epithelia, cornea and lens. We also identified eight additional mutations in SPATA13 in a cohort of 189 unrelated PACS/PAC/PACG samples. This gene encodes a 1277 residue protein which localises to the nucleus with partial co-localisation with nuclear speckles. In cells undergoing mitosis SPATA13 isoform I becomes part of the kinetochore complex co-localising with two kinetochore markers, polo like kinase 1 (PLK-1) and centrosome-associated protein E (CENP-E). The 9 bp deletion reported in this study increases the RAC1-dependent guanine nucleotide exchange factors (GEF) activity. The increase in GEF activity was also observed in three other variants identified in this study. Taken together, our data suggest that SPATA13 is involved in the regulation of mitosis and the mutations dysregulate GEF activity affecting homeostasis in tissues where it is highly expressed, influencing PACG pathogenesis.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Institute of Ophthalmology
Author
Institute of Ophthalmology
Author
Institute of Ophthalmology
Author
Institute of Ophthalmology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by