UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The diagnostic role of diffusional kurtosis imaging in glioma grading and differentiation of gliomas from other intra-axial brain tumours: a systematic review with critical appraisal and meta-analysis.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Review
  • Authors:
    Abdalla G, Dixon L, Sanverdi E, Machado PM, Kwong JSW, Panovska-Griffiths J, Rojas-Garcia A, Yoneoka D, Veraart J, Van Cauter S, Abdel-Khalek AM, Settein M, Yousry T, Bisdas S
  • Publication date:
    04/05/2020
  • Journal:
    Neuroradiology
  • Status:
    Published online
  • Country:
    Germany
  • PII:
    10.1007/s00234-020-02425-9
  • Language:
    eng
  • Keywords:
    Diagnosis, Diffusion-weighted imaging, Gliomas, Magnetic resonance imaging
Abstract
PURPOSE: We aim to illustrate the diagnostic performance of diffusional kurtosis imaging (DKI) in the diagnosis of gliomas. METHODS: A review protocol was developed according to the (PRISMA-P) checklist, registered in the international prospective register of systematic reviews (PROSPERO) and published. A literature search in 4 databases was performed using the keywords 'glioma' and 'diffusional kurtosis'. After applying a robust inclusion/exclusion criteria, included articles were independently evaluated according to the QUADAS-2 tool and data extraction was done. Reported sensitivities and specificities were used to construct 2 × 2 tables and paired forest plots using the Review Manager (RevMan®) software. A random-effect model was pursued using the hierarchical summary receiver operator characteristics. RESULTS: A total of 216 hits were retrieved. Considering duplicates and inclusion criteria, 23 articles were eligible for full-text reading. Ultimately, 19 studies were eligible for final inclusion. The quality assessment revealed 9 studies with low risk of bias in the 4 domains. Using a bivariate random-effect model for data synthesis, summary ROC curve showed a pooled area under the curve (AUC) of 0.92 and estimated sensitivity of 0.87 (95% CI 0.78-0.92) in high-/low-grade gliomas' differentiation. A mean difference in mean kurtosis (MK) value between HGG and LGG of 0.22 (95% CI 0.25-0.19) was illustrated (p value = 0.0014) with moderate heterogeneity (I2 = 73.8%). CONCLUSION: DKI shows good diagnostic accuracy in the differentiation of high- and low-grade gliomas further supporting its potential role in clinical practice. Further exploration of DKI in differentiating IDH status and in characterising non-glioma CNS tumours is however needed.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
UCL Queen Square Institute of Neurology
Author
Department of Neuromuscular Diseases
Author
Institute for Global Health
Author
Epidemiology & Applied Clinical Research
Author
Brain Repair & Rehabilitation
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by