Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects.
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Manole A, Efthymiou S, O'Connor E, Mendes MI, Jennings M, Maroofian R, Davagnanam I, Mankad K, Lopez MR, Salpietro V, Harripaul R, Badalato L, Walia J, Francklyn CS, Athanasiou-Fragkouli A, Sullivan R, Desai S, Baranano K, Zafar F, Rana N, Ilyas M, Horga A, Kara M, Mattioli F, Goldenberg A, Griffin H, Piton A, Henderson LB, Kara B, Aslanger AD, Raaphorst J, Pfundt R, Portier R, Shinawi M, Kirby A, Christensen KM, Wang L, Rosti RO, Paracha SA, Sarwar MT, Jenkins D, SYNAPS Study Group , Ahmed J, Santoni FA, Ranza E, Iwaszkiewicz J, Cytrynbaum C, Weksberg R, Wentzensen IM, Guillen Sacoto MJ, Si Y, Telegrafi A, Andrews MV, Baldridge D, Gabriel H, Mohr J, Oehl-Jaschkowitz B, Debard S, Senger B, Fischer F, van Ravenwaaij C, Fock AJM, Stevens SJC, Bähler J, Nasar A, Mantovani JF, Manzur A, Sarkozy A, Smith DEC, Salomons GS, Ahmed ZM, Riazuddin S, Riazuddin S, Usmani MA, Seibt A, Ansar M, Antonarakis SE, Vincent JB, Ayub M, Grimmel M, Jelsig AM, Hjortshøj TD, Karstensen HG, Hummel M, Haack TB, Jamshidi Y, Distelmaier F, Horvath R, Gleeson JG, Becker H, Mandel J-L, Koolen DA, Houlden H
  • Publication date:
  • Journal:
    Am J Hum Genet
  • Status:
  • Country:
    United States
  • PII:
  • Language:
  • Keywords:
    aminoacyl-tRNA synthetase, developmental delay, epilepsy, neurodevelopment, neuropathy, next generation sequencing
Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Genetics, Evolution & Environment
Department of Neuromuscular Diseases
Department of Neuromuscular Diseases
Department of Neuromuscular Diseases
Genetics, Evolution & Environment
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by