Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The effects of acute cannabidiol on cerebral blood flow and its relationship to memory: An arterial spin labelling magnetic resonance imaging study.
-
Publication Type:Journal article
-
Publication Sub Type:Article
-
Authors:Bloomfield MAP, Green SF, Hindocha C, Yamamori Y, Yim JLL, Jones APM, Walker HR, Tokarczuk P, Statton B, Howes OD, Curran HV, Freeman TP
-
Publication date:07/08/2020
-
Pagination:269881120936419
-
Journal:J Psychopharmacol
-
Status:Published
-
Country:United States
-
Language:eng
-
Keywords:ASL, MRI, cannabidiol, hippocampus, memory, perfusion
-
Author URL:
Abstract
BACKGROUND: Cannabidiol (CBD) is being investigated as a potential treatment for several medical indications, many of which are characterised by altered memory processing. However, the mechanisms underlying these effects are unclear. AIMS: Our primary aim was to investigate how CBD influences cerebral blood flow (CBF) in regions involved in memory processing. Our secondary aim was to determine if the effects of CBD on CBF were associated with differences in working and episodic memory task performance. METHODS: We used a randomised, crossover, double-blind design in which 15 healthy participants were administered 600 mg oral CBD or placebo on separate days. We measured regional CBF at rest using arterial spin labelling 3 h after drug ingestion. We assessed working memory with the digit span (forward, backward) and n-back (0-back, 1-back, 2-back) tasks, and we used a prose recall task (immediate and delayed) to assess episodic memory. RESULTS: CBD increased CBF in the hippocampus (mean (95% confidence intervals) = 15.00 (5.78-24.21) mL/100 g/min, t14 = 3.489, Cohen's d = 0.75, p = 0.004). There were no differences in memory task performance, but there was a significant correlation whereby greater CBD-induced increases in orbitofrontal CBF were associated with reduced reaction time on the 2-back working memory task ( r= -0.73, p = 0.005). CONCLUSIONS: These findings suggest that CBD increases CBF to key regions involved in memory processing, particularly the hippocampus. These results identify potential mechanisms of CBD for a range of conditions associated with altered memory processing, including Alzheimer's disease, schizophrenia, post-traumatic stress disorder and cannabis-use disorders.
› More search options
UCL Researchers