UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Comparison of manual and semi-automatic registration in augmented reality image-guided liver surgery: a clinical feasibility study
Abstract
© 2020, The Author(s). Background: The laparoscopic approach to liver resection may reduce morbidity and hospital stay. However, uptake has been slow due to concerns about patient safety and oncological radicality. Image guidance systems may improve patient safety by enabling 3D visualisation of critical intra- and extrahepatic structures. Current systems suffer from non-intuitive visualisation and a complicated setup process. A novel image guidance system (SmartLiver), offering augmented reality visualisation and semi-automatic registration has been developed to address these issues. A clinical feasibility study evaluated the performance and usability of SmartLiver with either manual or semi-automatic registration. Methods: Intraoperative image guidance data were recorded and analysed in patients undergoing laparoscopic liver resection or cancer staging. Stereoscopic surface reconstruction and iterative closest point matching facilitated semi-automatic registration. The primary endpoint was defined as successful registration as determined by the operating surgeon. Secondary endpoints were system usability as assessed by a surgeon questionnaire and comparison of manual vs. semi-automatic registration accuracy. Since SmartLiver is still in development no attempt was made to evaluate its impact on perioperative outcomes. Results: The primary endpoint was achieved in 16 out of 18 patients. Initially semi-automatic registration failed because the IGS could not distinguish the liver surface from surrounding structures. Implementation of a deep learning algorithm enabled the IGS to overcome this issue and facilitate semi-automatic registration. Mean registration accuracy was 10.9 ± 4.2 mm (manual) vs. 13.9 ± 4.4 mm (semi-automatic) (Mean difference − 3 mm; p = 0.158). Surgeon feedback was positive about IGS handling and improved intraoperative orientation but also highlighted the need for a simpler setup process and better integration with laparoscopic ultrasound. Conclusion: The technical feasibility of using SmartLiver intraoperatively has been demonstrated. With further improvements semi-automatic registration may enhance user friendliness and workflow of SmartLiver. Manual and semi-automatic registration accuracy were comparable but evaluation on a larger patient cohort is required to confirm these findings.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
Author
Department of Surgical Biotechnology
Author
Dept of Med Phys & Biomedical Eng
Author
Department of Surgical Biotechnology
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Computer Science
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by