UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Different Mating Contexts Lead To Extensive Rewiring Of Female Brain Coexpression Networks In The Guppy.
Abstract
Understanding the basis of behavior requires dissecting the complex waves of gene expression that underlie how the brain processes stimuli and produces an appropriate response. In order to determine the dynamic nature of the neurogenomic network underlying mate choice, we use transcriptome sequencing to capture the female neurogenomic response in two brain regions involved in sensory processing and decision-making under different mating and social contexts. We use differential coexpression (DC) analysis to evaluate how gene networks in the brain are rewired when a female evaluates attractive and non-attractive males, greatly extending current single-gene approaches to assess changes in the broader gene regulatory network. We find the brain experiences a remarkable amount of network rewiring in the different mating and social contexts we tested. Further analysis indicates the network differences across contexts are associated with behaviorally relevant functions and pathways, particularly learning, memory and other cognitive functions. Finally, we identify the loci that display social context-dependent connections, revealing the basis of how relevant neurological and metabolic pathways are differentially recruited in distinct social contexts. More broadly, our findings contribute to our understanding of the genetics of mating and social behavior by identifying gene drivers behind behavioral neural processes, illustrating the utility of DC analysis in neurosciences and behavior.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by