UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Correlative Synchrotron X-ray Imaging and Diffraction of Directed Energy Deposition Additive Manufacturing
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Chen Y, Clark SJ, Collins DM, Marussi S, Hunt SA, Fenech DM, Connolley T, Atwood RC, Magdysyuk OV, Baxter GJ, Jones MA, Leung CLA, Lee PD
  • Publication date:
    01/05/2021
  • Journal:
    Acta Materialia
  • Volume:
    209
  • Status:
    Published
  • Print ISSN:
    1359-6454
Abstract
© 2021 The governing mechanistic behaviour of Directed Energy Deposition Additive Manufacturing (DED-AM) is revealed by a combined in situ and operando synchrotron X-ray imaging and diffraction study of a nickel-base superalloy, IN718. Using a unique DED-AM process replicator, real-space imaging enables quantification of the melt-pool boundary and flow dynamics during solidification. This imaging knowledge was also used to inform precise diffraction measurements of temporally resolved microstructural phases during transformation and stress development with a spatial resolution of 100 µm. The diffraction quantified thermal gradient enabled a dendritic solidification microstructure to be predicted and coupled to the stress state. The fast cooling rate entirely suppressed the formation of secondary phases or recrystallisation in the solid-state. Upon solidification, the stresses rapidly increase to the yield strength during cooling. This insight, combined with the large solidification range of IN718 suggests that the accumulated plasticity exhausts the ductility of the alloy, causing liquation cracking. This study has revealed the mechanisms that govern the formation of highly non-equilibrium microstructures during DED-AM.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Mechanical Engineering
Author
Dept of Mechanical Engineering
Author
Dept of Mechanical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by