UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Forecasting elections results via the voter model with stubborn nodes
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Vendeville A, Guedj B, Zhou S
  • Publisher:
    Springer Science and Business Media LLC
  • Publication date:
    07/01/2021
  • Journal:
    Applied Network Science
  • Volume:
    6
  • Issue:
    1
  • Article number:
    1
  • Status:
    Published
  • Language:
    en
Abstract
AbstractIn this paper we propose a novel method to forecast the result of elections using only official results of previous ones. It is based on the voter model with stubborn nodes and uses theoretical results developed in a previous work of ours. We look at popular vote shares for the Conservative and Labour parties in the UK and the Republican and Democrat parties in the US. We are able to perform time-evolving estimates of the model parameters and use these to forecast the vote shares for each party in any election. We obtain a mean absolute error of 4.74%. As a side product, our parameters estimates provide meaningful insight on the political landscape, informing us on the proportion of voters that are strong supporters of each of the considered parties.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
Author
Dept of Computer Science
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by