Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Non-invasive somatotransgenic bioimaging in living animals [version 1; peer review: awaiting peer review]
Bioluminescence imaging enables noninvasive quantification of luciferase reporter gene expression in transgenic tissues of living rodents. Luciferase transgene expression can be regulated by endogenous gene promoters after targeted knock-in of the reporter gene, usually within the first intron of the gene. Even using CRISPR/Cas9 mediated genome editing this can be a time consuming and costly process. The generation of germline transgenic (GLT) rodents by targeted genomic integration of a gene expression cassette in embryonic stem (ES) cells is commonplace but results in the wastage of large numbers of animals during colony generation, back-crossing and maintenance. Using a synthetic/truncated promoter-driven luciferase gene to study promoter activity in a given tissue or organ of a GLT also often results in unwanted background luciferase activity during whole-body bioluminescent imaging as every cell contains the reporter. We have developed somatotransgenic bioimaging; a method to generate tissue-restricted transcription factor activated luciferase reporter (TFAR) cassettes in rodents that substantially reduces the number of animals required for experimentation. Bespoke designed TFARs are delivered to newborn pups using viral vectors targeted to specific organs by tissue-tropic pseudotypes. Retention and proliferation of TFARs is facilitated by stem/progenitor cell transduction and immune tolerance to luciferase due to the naïve neonatal immune system. We have successfully applied both lentiviral and adeno-associated virus (AAV) vectors in longitudinal rodent studies, targeting TFARs to the liver and brain during normal development and in well-established disease models. Development of somatotransgenic animals has broad applicability to non-invasively determine mechanistic insights into homeostatic and disease states and assess toxicology and efficacy testing. Somatotransgenic bioimaging technology is superior to current whole-body, light-emitting transgenic models as it reduces the numbers of animals used by generating only the required number of animals. It is also a refinement over current technologies given the ability to use conscious, unrestrained animals.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Maternal & Fetal Medicine
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by