UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Macroeconomic forecasting through news, emotions and narrative
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Tilly S, Ebner M, Livan G
  • Publication date:
    01/08/2021
  • Journal:
    Expert Systems with Applications
  • Volume:
    175
  • Status:
    Published
  • Print ISSN:
    0957-4174
Abstract
This study proposes a new method of incorporating emotions from newspaper articles into macroeconomic forecasts, attempting to forecast industrial production and consumer prices leveraging narrative and sentiment from global newspapers. For the most part, existing research includes positive and negative tone only to improve macroeconomic forecasts, focusing predominantly on large economies such as the US. These works use mainly anglophone sources of narrative, thus not capturing the entire complexity of the multitude of emotions contained in global news articles. This study expands the existing body of research by incorporating a wide array of emotions from newspapers around the world – extracted from the Global Database of Events, Language and Tone (GDELT) – into macroeconomic forecasts. We present a thematic data filtering methodology based on a bi-directional long short term memory neural network (Bi-LSTM) for extracting emotion scores from GDELT and demonstrate its effectiveness by comparing results for filtered and unfiltered data. We model industrial production and consumer prices across a diverse range of economies using an autoregressive framework, and find that including emotions from global newspapers significantly improves forecasts compared to three autoregressive benchmark models. We complement our forecasts with an interpretability analysis on distinct groups of emotions and find that emotions associated with happiness and anger have the strongest predictive power for the variables we predict.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by