UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Mechanosensory signalling in astrocytes.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Turovsky EA, Braga A, Yu Y, Esteras N, Korsak A, Theparambil SM, Hadjihambi A, Hosford PS, Teschemacher AG, Marina N, Lythgoe MF, Haydon PG, Gourine AV
  • Publication date:
    29/10/2020
  • Journal:
    J Neurosci
  • Status:
    Published
  • Country:
    United States
  • PII:
    JNEUROSCI.1249-20.2020
  • Language:
    eng
Abstract
Mechanosensitivity is a well-known feature of astrocytes, however, its underlying mechanisms and functional significance remain unclear. There is evidence that astrocytes are acutely sensitive to decreases in cerebral perfusion pressure and may function as intracranial baroreceptors, tuned to monitor brain blood flow. This study investigated the mechanosensory signalling in brainstem astrocytes, as these cells reside alongside the cardiovascular control circuits and mediate increases in blood pressure and heart rate induced by falls in brain perfusion. It was found that mechanical stimulation-evoked Ca2+ responses in astrocytes of the rat brainstem were blocked by (i) antagonists of connexin channels, connexin 43 (Cx43) blocking peptide Gap26, or Cx43 gene knockdown; (ii) antagonists of TRPV4 channels; (iii) antagonist of P2Y1 receptors for ATP; and (iv) inhibitors of phospholipase C or IP3 receptors. Proximity ligation assay demonstrated interaction between TRPV4 and Cx43 channels in astrocytes. Dye loading experiments showed that mechanical stimulation increased open probability of carboxyfluorescein-permeable membrane channels. These data suggest that mechanosensory Ca2+ responses in astrocytes are mediated by interaction between TRPV4 and Cx43 channels, leading to Cx43-mediated release of ATP which propagates/amplifies Ca2+ signals via P2Y1 receptors and Ca2+ recruitment from the intracellular stores. In astrocyte-specific Cx43 knockout mice the magnitude of heart rate responses to acute increases in intracranial pressure was not affected by Cx43 deficiency. However, these animals displayed lower heart rates at different levels of cerebral perfusion, supporting the hypothesis of connexin hemichannel-mediated release of signalling molecules by astrocytes having an excitatory action on the CNS sympathetic control circuits.SIGNIFICANCE STATEMENTThere is evidence suggesting that astrocytes may function as intracranial baroreceptors that play an important role in the control of systemic and cerebral circulation. To function as intracranial baroreceptors, astrocytes must possess a specialized membrane mechanism that makes them exquisitely sensitive to mechanical stimuli. This study shows that opening of connexin 43 hemichannels leading to the release of ATP is the key central event underlying mechanosensory Ca2+ responses in astrocytes. This astroglial mechanism plays an important role in the autonomic control of heart rate. These data add to the growing body of evidence suggesting that astrocytes function as versatile surveyors of the CNS metabolic milieu, tuned to detect conditions of potential metabolic threat, such as hypoxia, hypercapnia and reduced perfusion.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Clinical and Movement Neurosciences
Author
Neuro, Physiology & Pharmacology
Author
Neuro, Physiology & Pharmacology
Author
Experimental & Translational Medicine
Author
Education (Div of Med)
Author
Neuro, Physiology & Pharmacology
Author
Department of Imaging
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by