Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Modelling and measurement of ultrasound vibration potential distribution in an agar phantom
-
Publication Type:Journal article
-
Publication Sub Type:Article
-
Authors:Hossein F, Wang M
-
Publication date:01/06/2020
-
Journal:Chemical Physics
-
Volume:534
-
Status:Published
-
Print ISSN:0301-0104
Abstract
© 2020 Elsevier B.V. Ultrasound vibration potential (UVP) is an electric signal generated from the vibration of particles or ions along with the trajectory of the ultrasound pulses travelling through a colloidal suspension or ionic electrolyte. Therefore, it may be used to characterize or image the physiochemical property of particles or ions. This paper presents a modelling method based on the principle of static charged disc dipole and its equivalent circuit to model the ultrasound vibration potential distribution (UVPD) inside domains of interest. A tissue-like testing phantom (in 82 × 56 × 66 mm) embedded with one or more sample cells made from either agar or colloids with two electrodes fitted at optimized locations outside of the phantom is reported. The UVP measurements in peak-to-peak amplitude of 162/309 μV and 419/499 μV are measured from two interfaces of a single cell setting with either KCL (1 M) or nanoparticles (SiO2 in 21 nm, 1 wt%) mixed with agar. Results from the measurement comply with the modelling of UVPD. The experimental results are evidenced from the relative changes of normalised UVP signals from setting up six interfaces of three cells. The results demonstrate the feasibility of using the static electricity modelling method to estimate UVPD. This implies the potential of UVP for medicine and engineering.
› More search options
UCL Researchers