UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Registration of Untracked 2D Laparoscopic Ultrasound to CT Images of the Liver using Multi-Labelled Content-Based Image Retrieval.
Abstract
Laparoscopic Ultrasound (LUS) is recommended as a standard-of-care when performing laparoscopic liver resections as it images sub-surface structures such as tumours and major vessels. Given that LUS probes are difficult to handle and some tumours are iso-echoic, registration of LUS images to a pre-operative CT has been proposed as an image-guidance method. This registration problem is particularly challenging due to the small field of view of LUS, and usually depends on both a manual initialisation and tracking to compose a volume, hindering clinical translation. In this paper, we extend a proposed registration approach using Content-Based Image Retrieval (CBIR), removing the requirement for tracking or manual initialisation. Pre-operatively, a set of possible LUS planes is simulated from CT and a descriptor generated for each image. Then, a Bayesian framework is employed to estimate the most likely sequence of CT simulations that matches a series of LUS images. We extend our CBIR formulation to use multiple labelled objects and constrain the registration by separating liver vessels into portal vein and hepatic vein branches. The value of this new labeled approach is demonstrated in retrospective data from 5 patients. Results show that, by including a series of 5 untracked images in time, a single LUS image can be registered with accuracies ranging from 5.7 to 16.4 mm with a success rate of 78%. Initialisation of the LUS to CT registration with the proposed framework could potentially enable the clinical translation of these image fusion techniques.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Med Phys & Biomedical Eng
Author
Department of Surgical Biotechnology
Author
Department of Surgical Biotechnology
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by