UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Metal–ferroelectric supercrystals with periodically curved metallic layers
Abstract
Simultaneous manipulation of multiple boundary conditions in nanoscale heterostructures offers a versatile route to stabilizing unusual structures and emergent phases. Here, we show that a stable supercrystal phase comprising a three-dimensional ordering of nanoscale domains with tailored periodicities can be engineered in PbTiO3-SrRuO3 ferroelectric-metal superlattices. A combination of laboratory and synchrotron X-ray diffraction, piezoresponse force microscopy, scanning transmission electron microscopy and phase-field simulations reveals a complex hierarchical domain structure that forms to minimize the elastic and electrostatic energy. Large local deformations of the ferroelectric lattice are accommodated by periodic lattice modulations of the metallic SrRuO3 layers with curvatures up to 107 m-1. Our results show that multidomain ferroelectric systems can be exploited as versatile templates to induce large curvatures in correlated materials, and present a route for engineering correlated materials with modulated structural and electronic properties that can be controlled using electric fields.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
London Centre for Nanotechnology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by