Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The administration of antisense oligonucleotide golodirsen reduces pathological regeneration in patients with Duchenne muscular dystrophy.
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Scaglioni D, Catapano F, Ellis M, Torelli S, Chambers D, Feng L, Beck M, Sewry C, Monforte M, Harriman S, Koenig E, Malhotra J, Popplewell L, Guglieri M, Straub V, Mercuri E, Servais L, Phadke R, Morgan J, Muntoni F
  • Publication date:
  • Pagination:
  • Journal:
    Acta Neuropathol Commun
  • Volume:
  • Issue:
  • Status:
  • Country:
  • PII:
  • Language:
  • Keywords:
    Clinical trial, Dystrophin, Genetic therapies, Golodirsen, Immunofluorescence, Muscular dystrophy
During the last decade, multiple clinical trials for Duchenne muscular dystrophy (DMD) have focused on the induction of dystrophin expression using different strategies. Many of these trials have reported a clear increase in dystrophin protein following treatment. However, the low levels of the induced dystrophin protein have raised questions on its functionality. In our present study, using an unbiased, high-throughput digital image analysis platform, we assessed markers of regeneration and levels of dystrophin associated protein via immunofluorescent analysis of whole muscle sections in 25 DMD boys who received 48-weeks treatment with exon 53 skipping morpholino antisense oligonucleotide (PMO) golodirsen. We demonstrate that the de novo dystrophin induced by exon skipping with PMO golodirsen is capable of conferring a histological benefit in treated patients with an increase in dystrophin associated proteins at the dystrophin positive regions of the sarcolemma in post-treatment biopsies. Although 48 weeks treatment with golodirsen did not result in a significant change in the levels of fetal/developmental myosins for the entire cohort, there was a significant negative correlation between the amount of dystrophin and levels of regeneration observed in different biopsy samples. Our results provide, for the first time, evidence of functionality of induced dystrophin following successful therapeutic intervention in the human.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Neurodegenerative Diseases
Developmental Neurosciences Dept
Developmental Neurosciences Dept
Developmental Neurosciences Dept
Neurodegenerative Diseases
Institute of Cardiovascular Science
Developmental Neurosciences Dept
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by