UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Automated quantitative MRI volumetry reports support diagnostic interpretation in dementia: a multi-rater, clinical accuracy study.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Pemberton HG, Goodkin O, Prados F, Das RK, Vos SB, Moggridge J, Coath W, Gordon E, Barrett R, Schmitt A, Whiteley-Jones H, Burd C, Wattjes MP, Haller S, Vernooij MW, Harper L, Fox NC, Paterson RW, Schott JM, Bisdas S, White M, Ourselin S, Thornton JS, Yousry TA, Cardoso MJ, Barkhof F, Alzheimer’s Disease Neuroimaging Initiative
  • Publication date:
    15/01/2021
  • Journal:
    Eur Radiol
  • Status:
    Published
  • Country:
    Germany
  • PII:
    10.1007/s00330-020-07455-8
  • Language:
    eng
  • Keywords:
    Alzheimer’s disease, Atrophy, Frontotemporal dementia, Magnetic resonance imaging, Radiologists
Abstract
OBJECTIVES: We examined whether providing a quantitative report (QReport) of regional brain volumes improves radiologists' accuracy and confidence in detecting volume loss, and in differentiating Alzheimer's disease (AD) and frontotemporal dementia (FTD), compared with visual assessment alone. METHODS: Our forced-choice multi-rater clinical accuracy study used MRI from 16 AD patients, 14 FTD patients, and 15 healthy controls; age range 52-81. Our QReport was presented to raters with regional grey matter volumes plotted as percentiles against data from a normative population (n = 461). Nine raters with varying radiological experience (3 each: consultants, registrars, 'non-clinical image analysts') assessed each case twice (with and without the QReport). Raters were blinded to clinical and demographic information; they classified scans as 'normal' or 'abnormal' and if 'abnormal' as 'AD' or 'FTD'. RESULTS: The QReport improved sensitivity for detecting volume loss and AD across all raters combined (p = 0.015* and p = 0.002*, respectively). Only the consultant group's accuracy increased significantly when using the QReport (p = 0.02*). Overall, raters' agreement (Cohen's κ) with the 'gold standard' was not significantly affected by the QReport; only the consultant group improved significantly (κs 0.41➔0.55, p = 0.04*). Cronbach's alpha for interrater agreement improved from 0.886 to 0.925, corresponding to an improvement from 'good' to 'excellent'. CONCLUSION: Our QReport referencing single-subject results to normative data alongside visual assessment improved sensitivity, accuracy, and interrater agreement for detecting volume loss. The QReport was most effective in the consultants, suggesting that experience is needed to fully benefit from the additional information provided by quantitative analyses. KEY POINTS: • The use of quantitative report alongside routine visual MRI assessment improves sensitivity and accuracy for detecting volume loss and AD vs visual assessment alone. • Consultant neuroradiologists' assessment accuracy and agreement (kappa scores) significantly improved with the use of quantitative atrophy reports. • First multi-rater radiological clinical evaluation of visual quantitative MRI atrophy report for use as a diagnostic aid in dementia.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Brain Repair & Rehabilitation
Author
UCL Queen Square Institute of Neurology
Author
Neurodegenerative Diseases
Author
Clinical, Edu & Hlth Psychology
Author
Neurodegenerative Diseases
Author
Dept of Med Phys & Biomedical Eng
Author
Neurodegenerative Diseases
Author
Dept of Med Phys & Biomedical Eng
Author
Neurodegenerative Diseases
Author
UCL Queen Square Institute of Neurology
Author
Brain Repair & Rehabilitation
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by