UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A Potential Alternative Orodispersible Formulation to Prednisolone Sodium Phosphate Orally Disintegrating Tablets
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Tawfik EA, Scarpa M, Abdelhakim HE, Bukhary HA, Craig DQM, Barker SA, Orlu M
  • Publisher:
    MDPI AG
  • Publication date:
    19/01/2021
  • Pagination:
    120
  • Journal:
    Pharmaceutics
  • Volume:
    13
  • Issue:
    1
  • Status:
    Published
  • Language:
    en
Abstract
The orally disintegrating tablet (ODT) has shown vast potential as an alternative oral dosage form to conventional tablets wherein they can disintegrate rapidly (≤30 s) upon contact with saliva fluid and should have an acceptable mouthfeel as long as their weight doesn’t exceed 500 mg. However, owing to the bitterness of several active ingredients, there is a need to find a suitable alternative to ODTs that maintains their features and can be taste-masked more simply and inexpensively. Therefore, electrospun nanofibers and solvent-cast oral dispersible films (ODFs) are used in this study as potential OD formulations for prednisolone sodium phosphate (PSP) that is commercially available as ODTs. The encapsulation efficiency (EE%) of the ODFs was higher (≈100%) compared to the nanofibers (≈87%), while the disintegration time was considerably faster for the electrospun nanofibers (≈30 s) than the solvent-cast ODFs (≈700 s). Hence, accelerated release rate of PSP from the nanofibers was obtained, due to their higher surface area and characteristic surface morphology that permitted higher wettability and thus, faster erosion. Taste-assessment study using the electronic-tongue quantified the bitterness threshold of the drug and its aversiveness concentration (2.79 mM). Therefore, a taste-masking strategy would be useful when further formulating PSP as an OD formulation.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
UCL School of Pharmacy
Author
Pharmaceutics
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by