Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Ergogenic effect of pre-exercise chicken broth ingestion on a high-intensity cycling time-trial
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Barbaresi S, Blancquaert L, Nikolovski Z, de Jager S, Wilson M, Everaert I, De Baere S, Croubels S, De Smet S, Cable NT, Derave W
  • Publisher:
    Springer Science and Business Media LLC
  • Publication date:
  • Journal:
    Journal of the International Society of Sports Nutrition
  • Volume:
  • Issue:
  • Article number:
  • Status:
    Published online
  • Language:
Abstract Background chicken meat extract is a popular functional food in Asia. It is rich in the bioactive compounds carnosine and anserine, two histidine-containing dipeptides (HCD). Studies suggest that acute pre-exercise ingestion of chicken extracts has important applications towards exercise performance and fatigue control, but the evidence is equivocal. This study aimed to evaluate the ergogenic potential of the pre-exercise ingestion of a homemade chicken broth (CB) vs a placebo soup on a short-lasting, high-intensity cycling exercise. Methods fourteen men participated in this double-blind, placebo-controlled, crossover intervention study. Subjects ingested either CB, thereby receiving 46.4 mg/kg body weight of HCD, or a placebo soup (similar in taste without HCD) 40 min before an 8 min cycling time trial (TT) was performed. Venous blood samples were collected at arrival (fasted), before exercise and at 5 min recovery. Plasma HCD were measured with UPLC-MS/MS and glutathione (in red blood cells) was measured through HPLC. Capillary blood samples were collected at different timepoints before and after exercise. Results a significant improvement (p = 0.033; 5.2%) of the 8 min TT mean power was observed after CB supplementation compared to placebo. Post-exercise plasma carnosine (p <  0.05) and anserine (p <  0.001) was significantly increased after CB supplementation and not following placebo. No significant effect of CB supplementation was observed either on blood glutathione levels, nor on capillary blood analysis. Conclusions oral CB supplementation improved the 8 min TT performance albeit it did not affect the acid-base balance or oxidative status parameters. Further research should unravel the potential role and mechanisms of HCD, present in CB, in this ergogenic approach.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Department of Targeted Intervention
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by