Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Investigation of spatial nano-structure development of the hardened C3S pastes by serial block-face SEM
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Yang F, Liu X, Wang P, Wang S, Robinson I, Chen B
  • Publication date:
  • Journal:
    Materials Characterization
  • Volume:
  • Status:
  • Print ISSN:
© 2021 Elsevier Inc. Hardened tricalcium silicate (C3S) pastes cured for different times from 12 h to 28 days were studied by serial block-face scanning electron microscopy (SBFSEM) with the region of interest (ROI) of (2.0 × 104) μm3 and their three-dimensional (3D) spatial structures with a voxel size down to 16.6 nm × 16.6 nm × 20 nm were quantitatively analyzed. From these 3D images, the morphological characteristics of different components of the hardened C3S pastes in three-dimensions are observed directly, such as the connected pores and closed pores. Additionally, the degree of hydration and porosity of the samples are measured as well. Results show that the evolution of the degree of hydration reveals the high reactivity of C3S with water. The formation of the pore network is a complex process which includes not only the partition of the open pores but also the continued hydration of C3S in the closed pores, especially the newly formed closed pores during hydration. The quantitative analysis from SBFSEM measurements were compared with those from traditional TG-DSC and MIP, and it proves that SBFSEM has good applicability in the field of cement-based materials.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
London Centre for Nanotechnology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by