UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Multi-Scale Studies of 3D Printed Mn–Na–W/SiO₂ Catalyst for Oxidative Coupling of Methane
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Karsten T, Middelkoop V, Matras D, Vamvakeros A, Poulston S, Grosjean N, Rollins B, Gallucci F, Godini HR, Jacques SDM, Beale AM, Repke J-U
  • Publisher:
    MDPI AG
  • Publication date:
    01/03/2021
  • Pagination:
    290
  • Journal:
    Catalysts
  • Volume:
    11
  • Issue:
    3
  • Status:
    Published
  • Language:
    en
Abstract
This work presents multi-scale approaches to investigate 3D printed structured Mn–Na–W/SiO2 catalysts used for the oxidative coupling of methane (OCM) reaction. The performance of the 3D printed catalysts has been compared to their conventional analogues, packed beds of pellets and powder. The physicochemical properties of the 3D printed catalysts were investigated using scanning electron microscopy, nitrogen adsorption and X-ray diffraction (XRD). Performance and durability tests of the 3D printed catalysts were conducted in the laboratory and in a miniplant under real reaction conditions. In addition, synchrotron-based X-ray diffraction computed tomography technique (XRD-CT) was employed to obtain cross sectional maps at three different positions selected within the 3D printed catalyst body during the OCM reaction. The maps revealed the evolution of catalyst active phases and silica support on spatial and temporal scales within the interiors of the 3D printed catalyst under operating conditions. These results were accompanied with SEM-EDS analysis that indicated a homogeneous distribution of the active catalyst particles across the silica support.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Chemistry
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by