UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Electrical Conductivity Adjustment for Interface Capacitive-Like Storage in Sodium-Ion Battery
Abstract
Sodium-ion battery (SIB) is significant for grid-scale energy storage. However, a large radius of Na ions raises the difficulties of ion intercalation, hindering the electrochemical performance during fast charge/discharge. Conventional strategies to promote rate performance focus on the optimization of ion diffusion. Improving interface capacitive-like storage by tuning the electrical conductivity of electrodes is also expected to combine the features of the high energy density of batteries and the high power density of capacitors. Inspired by this concept, an oxide-metal sandwich 3D-ordered macroporous architecture (3DOM) stands out as a superior anode candidate for high-rate SIBs. Taking Ni-TiO sandwich 3DOM as a proof-of-concept, anatase TiO delivers a reversible capacity of 233.3 mAh g in half-cells and 210.1 mAh g in full-cells after 100 cycles at 50 mA g . At the high charge/discharge rate of 5000 mA g , 104.4 mAh g in half-cells and 68 mAh g in full-cells can also be obtained with satisfying stability. In-depth analysis of electrochemical kinetics evidence that the dominated interface capacitive-like storage enables ultrafast uptaking and releasing of Na-ions. This understanding between electrical conductivity and rate performance of SIBs is expected to guild future design to realize effective energy storage. 2 2 −1 −1 −1 −1 −1 −1
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Chemistry
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by