UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Higher throughput drug screening for rare respiratory diseases: Readthrough therapy in primary ciliary dyskinesia.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Lee DDH, Cardinale D, Nigro E, Butler CR, Rutman A, Fassad MR, Hirst RA, Moulding D, Agrotis A, Forsythe E, Peckham D, Robson E, Smith CM, Somavarapu S, Beales PL, Hart SL, Janes SM, Mitchison HM, Ketteler R, Hynds RE, O'Callaghan C
  • Publication date:
    01/04/2021
  • Journal:
    Eur Respir J
  • Status:
    Published
  • Country:
    England
  • PII:
    13993003.00455-2020
  • Language:
    eng
Abstract
Development of therapeutic approaches for rare respiratory diseases is hampered by the lack of systems that allow medium-to-high-throughput screening of fully differentiated respiratory epithelium from affected patients. This is a particular problem for primary ciliary dyskinesia (PCD), a rare genetic disease caused by mutations in genes that adversely affect ciliary movement and consequently mucociliary transport. Primary cell culture of basal epithelial cells from nasal brush biopsies, followed by ciliated differentiation at air-liquid interface (ALI) has proven to be a useful tool in PCD diagnostics but the technique's broader utility, including in pre-clinical PCD research, has been restricted by the limited number of basal cells that it is possible to expand from such biopsies. Here, we describe an immunofluorescence screening method, enabled by extensive expansion of PCD patient basal cells and their culture into differentiated respiratory epithelium in miniaturised 96-well transwell format ALI cultures. Analyses of ciliary ultrastructure, beat pattern and beat frequency indicate that a range of different PCD defects can be retained in these cultures. As proof-of-principle, we performed a personalised investigation in a patient with a rare and severe form of PCD (reduced generation of motile cilia, RGMC), in this case caused by a homozygous nonsense mutation in the MCIDAS gene. The screening system allowed drugs that induce translational readthrough to be evaluated alone or in combination with nonsense-mediated decay inhibitors. Restoration of basal body formation in the patient's nasal epithelial cells was seen in vitro, suggesting a novel avenue for drug evaluation and development in PCD.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Cell & Developmental Biology
Author
Genetics & Genomic Medicine Dept
Author
UCL GOS Institute of Child Health
Author
Genetics & Genomic Medicine Dept
Author
Genetics & Genomic Medicine Dept
Author
Genetics & Genomic Medicine Dept
Author
Research Department of Oncology
Author
Respiratory Medicine
Author
Lab for Molecular Cell Bio MRC-UCL
Author
UCL GOS Institute of Child Health
Author
Genetics & Genomic Medicine Dept
Author
Developmental Biology & Cancer Dept
Author
Infection, Immunity & Inflammation Dept
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by